
DynaRapid: Fast-Tracking from C to Routed Circuits
Andrea Guerrieri†∗, Srijeet Guha∗, Chris Lavin§, Eddie Hung§, Lana Josipović‡ and Paolo Ienne∗

∗EPFL, School of Computer and Communication Sciences, Lausanne, Switzerland
†HES-SO Valais-Wallis, School of Engineering, Sion, Switzerland

§AMD Research and Advanced Development
‡ETH Zurich, Department of Information Technology and Electrical Engineering, Zurich, Switzerland

Abstract—Advancements in design automation technologies,
such as high-level synthesis (HLS), have raised the input ab-
straction level and made the design entry process for FPGAs
more friendly to software programmers. In contrast, the backend
compilation process for implementing designs on FPGAs is
considerably more lengthy compared to software compilation:
while software code compilation may take just a few seconds,
FPGA compilation times can often span from several minutes to
hours due to the complexity of the underlying toolchain and ever-
growing device capacities. In this paper, we present DynaRapid,
a fast compilation tool that generates—in a matter of seconds—
fully legal placed-and-routed designs for commercial FPGAs.
Elastic circuits created by the HLS tool Dynamatic are made
exclusively of a limited number of reusable components; we
exploit this fact to create a library of placed and routed building
blocks, and then stitch together instances of them as needed
through RapidWright. Our approach accelerates the C-to-FPGA
implementation process by a geomean 20× with only 10% of
degradation in operating frequency compared to a conventional
commercial off-the-shelf implementation flow.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are versatile
computational devices; yet, the experience that they can offer
to programmers critically depends on two challenging aspects:
(i) the possibility for users to program these devices with
common languages used for high-performance applications,
such as C/C++, and (ii) a quick development turnaround from
code changes to execution.

Progress in software-like design entry for FPGAs (referred
to as high-level synthesis, HLS) has been significant for more
than a decade [1], [2]. Typical modern FPGA accelerators
consist of a relatively large and highly optimized infrastruc-
ture (e.g., customized memory hierarchy, host interfaces, job
scheduling mechanisms) and of a multitude of processing
elements (PEs) implementing one or more computing kernels.
While the former is often handcrafted at register transfer level
(RTL) and seldomly requires changes for a given application
domain, PEs are usually small- to medium-size kernels where
software development focuses and where the ability of HLS
to extract operation-level parallelism has the best chances to
excel. Yet, the time lag for developers between implementing
code changes and starting to debug remains highly unsatis-
factory. While common software compilation times are on the
order of seconds to produce executable files after limited code
changes, FPGA tools ordinarily take up to hours to produce
a placed and routed design. A fast, software-like compilation
flow for FPGAs is the goal we pursue in this paper.

Merge

Buff

1

Branch

N
Fork

LUT

FF

FF

LUT

FF

LUT

FF

LUT

FF

LUT FF

LUT

FF

LUT

FF

LUT

FF

LUT

FF

LUT

LUT

LUT
LUT

LUT

FF

Add

Cmp

LUT

LUT

LUT

LUT

FF

LUT

FF

FF

LUT

FF

LUT

LUT LUT

FF
FF

LUT
LUT

LUT

LUT

LUT

LUT

LUT

LUT

f(int32 x,int32 N)
do x++

while (x<N)
return x

…
…

…
…

…

…

… …

…
… …

…

…
… …

…

…
… …

…

…

a) Input dataflow
circuit

b) Standard FPGA
placement & routing

c) DynaRapid (our work)

To place: 151 LUTs, 124 FFs
To route: 1299 wires (bits)

To place: 6 elastic components
To route: 306 wires (bits)

xstart

xend

xstart

xend

da
ta

va
lid

re
ad

y

32

LUT

FF

…

Fig. 1: HLS, Elastic Circuits, and FPGAs. (a) Some HLS tools
compile C code into an elastic circuit made of handshaken
components out of a finite set. (b) In a regular FPGA flow,
one would synthesize the circuit into a fine-grained netlist
of bit-level FPGA primitives that need to be placed-and-
routed through a complex and time-consuming process. (c)
DynaRapid leverages the peculiar structure of elastic circuits
and preimplements every possible elastic component offline in
isolation, prior to HLS compilation; during compilation, it only
instantiates, stitches, places, and routes the appropriate word-
level components for a faster and simpler implementation.

A. Exploiting Structure to Reduce Complexity

In recent years, a new approach to HLS has gained some
popularity: instead of generating statically scheduled circuits,
compilers produce elastic circuits [3], [4]. These circuits
are composed of elastic (also called dataflow) components
exchanging data through connections with handshake signals:
there is no centralized controller and computation advances as
soon as operands are available. One advantage of such HLS
tools is that this technique may be better adapted to classic
software applications and that less code refactoring may be
needed to extract performance. But what makes this approach
compelling for this work is that these circuits are created
exclusively by interconnecting predefined components out of
a limited set, without any glue logic whatsoever. Exploiting
this high-level structure is the first ingredient of our recipe.

Practically any HLS tool eventually outputs its results in
an RTL language. This needs to be passed through a logic
synthesizer, technology-mapped onto lookup tables and other
FPGA primitives, placed, and routed, before generating a
configuration bitstream. This is an immensely complex process

Input C

Logic Synthesis+
Place and Route

Logic
synthesisElastic

Components
(HDL)

DynaRapid
Footprint

Generation
Synthesized
Component

Resource Utilization
Reports

FPGA Device Map

Footprint 1

Footprint 2

Footprint n

DynaRapid
Stitch and Route

Elastic circuit

Dynamatic

Compilation

Standard HLS flow

Preimplemented
elastic components

Placed and Routed CircuitDynaRapid flow

 HDL Netlist Placed and Routed Circuit

Before Compilation

Fig. 2: DynaRapid. Our flow (top) contrasted to a typical flow (bottom). We exploit the modularity of elastic circuits produced
by Dynamatic to build offline (hours) placed and routed components and, at compile time, we place and route coarser circuits
with 1–2 orders of magnitude less components and only route intercomponent wires (seconds). The output of DynaRapid
Footprint Generation (in pink) is a preimplemented set of all elastic components with a variety of footprints that can be
relocated to many positions in the FPGA. The output of DynaRapid Stitch and Route (in green) is a fully placed-and-routed
design checkpoint for AMD FPGAs.

where many NP-complete problems are solved. Obtaining the
final result may take, as evoked before, from tens of minutes to
hours. RapidWright [5] is an open-source Java framework that
enables the direct manipulation of designs on AMD FPGAs
and, in particular, makes it possible to relocate, compose, and
stitch together preimplemented blocks on a specific device.
Using RapidWright to exploit the modularity of elastic circuits
is the second ingredient of our recipe.

Ultimately, the idea is to increase the granularity of the
placed and routed elements (from LUTs and DSPs to elastic
components), use a simple greedy placer for circuits now
composed of 1–2 orders of magnitude less elements, and
finally route only fewer intercomponent wires.

B. Dynamatic + RapidWright = DynaRapid

Figure 1a shows an elastic circuit implementing the func-
tionality of the code snippet below it. The circuit is built out
of a finite set of components: standard blocks that perform
computation (e.g., the adder and the comparator in the figure),
store data (e.g., a buffer), or steer data appropriately (e.g., the
merge, that issues any one of its input values of x into the loop;
the fork, that replicates x++ to send it to the two successor
units; the branch, that decides when to terminate the execution
and issues the updated x to the appropriate successor). All
units communicate through elastic channels with bidirectional
handshake signals, indicating the validity of the data from the
predecessor and the readiness of the successor to accept it.
Several HLS approaches systematically and quickly produce
such circuits from high-level code [3], [4], [6]–[8]; regardless
of the exact generation strategy, they all employ a finite set of
well-defined components and a consistent handshake protocol,
just like the shown circuit.

Instead of producing and implementing the circuit using the
ordinary FPGA toolflow as in Figure 1b, we want to preserve
the elastic constructs and modularity: well-defined elastic
components can be implemented prior to the compilation
process; then, given a particular HLS-produced elastic circuit,
these preimplemented components can be composed, stitched,
placed, and routed to implement the application at hand.
This makes the place-and-route process significantly simpler

and faster, as Figure 1c suggests. Of course, such a com-
plexity reduction and accompanying runtime savings do not
come for free: as the elastic components are preimplemented,
each of their logic functions is optimized in isolation and
there is no longer an opportunity to perform powerful logic-
synthesis optimizations across components. Qualitatively, the
strategies of Figures 1b and 1c exhibit the very trade-off
between compilation speed and optimization that one expects
in software compilers between the compilation options -O0
and -O2/-O3. This is exactly what we pursue.

In this work, we introduce DynaRapid, which leverages Dy-
namatic [9] to generate elastic circuits composed exclusively
of components out of a library and combines it with the ability
of RapidWright to relocate few placed and routed components
and to perform only intercomponent routing. The rest of the
paper is organized as follows: After an analysis of related work
in Section II, we provide the necessary background on FPGA
architecture and on RapidWright in Section III. In Section IV,
we describe our process to preimplement offline our library of
computational units that we will later place and route during
compilation, following the strategy of Section V. We evaluate
our approach in Section VI prior to concluding the paper.

II. RELATED WORK

Several techniques aim to reduce the overall compilation
time for FPGAs. Early approaches focused on algorithmic
optimizations by tuning parameters to effectively trade off
quality for improved runtime [10], [11]. Others attempted
to minimize the total set of components to be placed by
relying on macros [12] and macro prerouting [5], [13]. Yet,
none of these approaches supports the full flow from C
to placed-and-routed design because traditional HLS is ill-
suited for these paradigms. More recent efforts by Xiao et
al. [14] successfully leveraged modern HLS; they divided
the FPGA into separately managed physical regions to allow
independent logic to be mapped to the FPGA and accelerated
the design process using partial reconfiguration [15]. Guo et
al. [16] developed a parallel physical implementation of FPGA
HLS-based designs called RapidStream; it mainly focuses on
reducing the compilation runtime using a latency-insensitive

2

IOB

Component

FPGA

DSP

DSP

DSP

DSP

DSP

CLECLECLECLE

CLECLECLECLE

CLECLECLECLE

CLECLECLECLE

CLECLECLECLE

IOB

IOB

IOB

IOB

x
x
x

x
x

x
x
x
x

x
x
x

x
x

x
x
x
x

Fig. 3: Columnar FPGA Architecture. An FPGA is organized
as a 2D array of various types of tiles, arranged in homoge-
neous columns of variable width. One of our standard elastic
components is shown with two different footprints and, with
the same footprint, in two different positions in the array.

approach to address the timing closure challenges of large
designs.

DynaRapid and RapidStream goals are certainly aligned
(reduce the time from high-level design to FPGA) and the
methodology is similar (use RapidWright to stitch together dif-
ferent parts) but at different granularities: RapidStream stitches
together a dozen of complex HLS-based user partitions, while
we operate with hundreds of components that could be used
to build the partitions themselves. RapidStream is about par-
allelism: split a design into relatively large partitions (each of
the size of a significant FPGA portion) that can be placed and
routed in parallel with a normal flow and stitched together later
with RapidWright. In contrast, DynaRapid is about intrinsic
structure: we take designs made of a limited set of small
universal components, prepared once and for all in a library,
and stitch them together with RapidWright profiting of the
smaller number of components and nets to reduce runtime.
Given such huge granularity differences and the different
nature of the components, the problems we solve are in most
cases completely different: for instance, our generation of
various footprints for all our components (Section IV) and the
placement problem (Section V-A) are totally unique to our
work.

III. FPGA ARCHITECTURE AND RAPIDWRIGHT

Our goal is split into two tasks: One is the offline creation of
an elastic component library, performed only once per device
type and before invoking DynaRapid; it is a time-consuming
batch job. The second task is the user design generation from
C/C++ code and from the netlist of standard elastic compo-
nents produced by our selected HLS tool, Dynamatic [9]. This
is the task that matters to speed up. Figure 2 shows on the left
the offline task, and on the right the online task.

Building the library relies on the regularity of FPGAs to
create a limited number of preset implementations of all
possible components that Dynamatic may instantiate. FPGAs
typically have a fairly regular columnar architecture and AMD
devices are no exception: they are constructed as a 2D array
whose columns are made of identical tiles (e.g., LUTs, DSPs,
memories) [17], as Figure 3 illustrates. Unfortunately, real

devices have small irregularities in this array for a variety of
reasons; we will discuss later how we account for this.

RapidWright [5] is a tool by AMD that allows the low-
level manipulation of circuit implementations on AMD FP-
GAs. For the purpose of this work, it makes it possible to
relocate preimplemented blocks to different but compatible
areas of the device and route the connections between such
preimplemented blocks to obtain a final working design. The
blocks are previously synthesized, placed, and routed with the
standard implementation flow (Vivado). The restricted areas
used by Vivado to preimplement a design are called Pblocks.
We limit ourselves to rectangular Pblocks made of a few rows
of identical sequences of tiles. Figure 3 shows on the left
an example of two implementations of the same component
(requiring three logic resources CLEs, for example) in two
different Pblocks (a 2×2 rectangle and a 1×3 one). Once we
obtain an implementation of a component by restricting Vivado
to a specific area (such as the 2 × 2 Pblock in the figure),
RapidWright can relocate it into any other area composed
of the same tiles, as suggested in the example. We will call
different rectangular Pblocks for a component footprints.

IV. LIBRARY GENERATION

We need two qualitatively different explorations to build our
library of preimplemented components: On one hand, we need
to explore all possible different rectangular groups of tiles of
an FPGA that can be used to map each of our components.
On the other, we need to find all places where that particular
Pblock can be relocated to or, in other words, identify all
occurrences of the same rectangular group of tiles in the 2D
array. Our main goal in the generation process is to obtain
implementations that (i) have the smallest possible footprint,
and (ii) can be placed in many locations on the FPGA.

An overview of our library generation flow is shown in the
left part of Figure 2. The RTL description of each component
used by Dynamatic is synthesized and technology-mapped
independently; the resulting netlist of FPGA resources imple-
menting a component is the input to the process. The final
library contains, for every possible standard elastic component,
a variety of possible rectangular areas occurring at least once
on the target FPGA and where the component has been
successfully preplaced and prerouted. As mentioned, we call
these alternate implementations of a component footprints.
Additionally, for each footprint of each component, the library
contains a list of all possible valid placements of the preimple-
mented component. Naturally, producing all footprints and all
possible relocation targets needs a detailed map of a particular
target FPGA device; this can be obtained from RapidWright.

The rest of this section discusses the three main steps of
the library creation: We first show how we generate all useful
footprints for each component. We then discuss how to select
the footprints to ensure that components can always be placed
adjacent to each other without routing conflicts. Finally, we
discuss our approach to expose the pins of each component in
the footprint and thus ensure final routability.

3

CLE

Footprint 3

Footprint 2

Footprint 1

FPGA
DSP

DSP

DSP

DSP

DSP

CLECLECLECLE

CLE CLECLECLECLE

CLE CLECLECLECLE

CLE CLECLECLECLE

CLE CLECLECLECLE

Footprint 4

Footprint 5

Fig. 4: Footprint Enumeration. For each component and from
each starting tile in the FPGA array, we explore rectangular
footprints of increasing height that are wide enough to have
sufficient logic and routing resources to accommodate the fully
routed component.

A. Footprints and Relocation

The search for all possible footprints is a relatively straight-
forward exhaustive enumeration of all possible rectangular
areas of the target device containing at least the minimal
resources needed to implement a component. To explore all
possible positions and aspect ratios, the following process is
repeated starting from any FPGA tile: For each height (i.e.,
number of rows) of the footprint and for each starting tile, a
minimal width is identified by adding the minimum number
of columns to the right of the starting tile so that the footprint
contains at least the logic resources (CLEs, DSPs, etc.) needed
for the component. Once this minimal rectangular tile area
is identified, the component is placed and routed; if routing
fails, the width is increased to bring in more resources, and
the placement and routing are attempted again. Once routing
succeeds, a new footprint for the component has been found
and the process is repeated with one more row and, again, the
minimum number of columns. Figure 4 illustrates this process.

Due to the FPGA’s regularity, most of the explored candi-
date footprints, both failing and successful, end up identical.
Thus, previous results are cached and, if the current footprint
has already been encountered, the cached result is assumed and
the repeated occurrence is recorded. While at the beginning
and for starting tiles in the first row, most candidates require a
full placement and routing run, soon thereafter all results can
be found in the cache except for the occurrence of irregularities
in the array, as those mentioned in Section III. The result is a
set of footprints for each component and, for each footprint,
a map of FPGA array positions where this footprint is valid.

B. Routing Resources

The footprints identified in the previous section have enough
logic resources to implement our components. Yet, there is
no guarantee that they have all the required routing resources
inside the footprint: Switch boxes serve both the logic tiles
to their right and left. Figure 3 illustrates this with the “X”
marked elements corresponding to switch boxes. A switch box
is implicitly included in the footprint when either its left or
its right logic resource tile (CLE) is included in the footprint.

Ignoring this aspect leads to invalid footprints, as illustrated
in Figure 5(a): The footprint, shown as a purple rectangle,
contains all the logic for the component; however, the adjacent
switch boxes of its tiles are not explicitly included in the
footprint even though a large portion of the routing requires
them. This prevents the composition of such a footprint with
others as routing resources used in an abutting component may
overlap. Consider the example of Figure 5(b): the two elastic
components have routing that spans beyond the footprints
(green wires outside of the purple rectangles); when placed
next to each other, the external wires overlap and the design
is invalid (yellow lines show the conflicting routing resources).

To address this issue, we developed a heuristic to reject
candidate footprints with adjacent routing resources that are
not included in the footprint; when this happens, they are
expanded to the next tile to implicitly include them. The result
is in Figure 5(c): a different footprint for the component of
Figure 5(b) uses the same logic tile rectangle (2×4) but only in
positions where the routing resources are implicitly included.

C. I/O Pins

Our implementation of the elastic components is performed
out of context which causes its I/O pins to be left unconnected.
Simply placing and routing such a component may result in
these floating I/O pins being placed deep inside the footprint
where they may be unroutable when connected to other
components. To prevent this issue, we devised a postprocessing
technique to ensure routability of the component I/Os to the
surrounding area. The idea is to connect the component I/Os
to temporary external flip-flops (FFs) which imitate potential
connections to other components, thus ensuring that inter-
component connections are feasible. After place and route,
removing these temporary FFs then leaves the I/O pins ex-
posed at the edge of the footprint. This procedure is illustrated
by an example in Figure 6. Note that the example is a very
simple one: actual elastic components could have many more
I/Os; for instance, a 32-bit fork with one input and six outputs
has (1 + 6) · (32 + 2) = 238 I/Os.

D. The Library

The end result of the library generation process is a large
device-specific collection of preimplemented instances of all
components Dynamatic might instantiate; they are generated
for maximum speed and often achieve near-spec maximum
operating frequency due to their small size and complexity.

To get a sense of the quality of our library, we evaluated the
following metrics: Density, computed as the ratio between the
logic resources needed and the total logic resources included in
the footprint. Relocatability, indicating the number of possible
locations in the FPGA that can host the given footprint. For
a 2-input 32-bit adder, for example, eight possible footprints
exist, ranging from 16% to 85% in density. Relocatability is
larger than 60K on the target FPGA hosting 1728K LUTs.

To validate the correctness of our footprint construction,
we tested our strategy as illustrated in Figure 7: We took
some of our most complex components, placed them as close

4

a) b) c)

Fig. 5: Footprints with Valid Routing. (a) The purple box delimits the footprint and used routing resources (green diagonal
lines) extend beyond it. (b) When routing resources of two components overlap, the implementation is invalid (yellow lines are
disconnected wires). (c) The purple box delimits a footprint containing all wires and routing resources (green diagonal lines).

a) b) c) d) e)

Fig. 6: Exposing I/O Pins. (a) I/Os are naturally scattered
inside the footprint. (b) FFs are instantiated around the com-
ponent. (c) FFs are connected to the component I/Os inside a
larger area (Pblock). (d) The new design is routed within the
larger Pblock. (e) The FFs and the larger Pblock are removed.
The elastic component now has the I/Os exposed.

a) b)

Fig. 7: Example of Routability Test. (a) Library components
are placed on the FPGA. (b) The design is fully routed by
Vivado with no routing errors.

as possible, and connected them randomly to each other. We
successfully repeated this a few times for all components and
thus gained confidence in the correctness of the process. The
complete library generation process takes approximately 10
hours for all 74 Dynamatic 32-bit components on a Virtex
UltraScale+ device (xcvu13p-fsga2577). Each component can
have up to 50 different footprints, depending on the aspect
ratio and the position on the FPGA array. The size of the
complete library on disk is about 1 GB.

V. COMPILATION

In the previous section, we described our strategy to create a
library of individually placed-and-routed elastic components;
we here discuss how to compose them into complete circuits
on an FPGA. While library generation is an offline, once-
per-device task and is therefore not time-sensitive, online
compilation is the time-critical task. Dynamatic takes the
C/C++ code and produces within seconds a netlist of elastic
components implementing the required functionality. Our goal
here is to produce a physical implementation of the circuit on
an FPGA using the preimplemented components in our library.
As with any backend flow, there are essentially two key actions
needed: decide on the placement of the components from the
library and route them. We will detail these in the coming
sections.

A. Placement

The main challenge is to create a good placement for
the preimplemented components on the FPGA array. There
exists a wealth of placement algorithms targeting different
optimization objectives (e.g., wire length, critical path delay, or
routability); metaheuristics, such as simulated annealing, are a
classic option. Not unique to our flow, our placement problem
is made peculiar by a number of characteristics: (1) We can
select different footprints for the same component, with a
variety of aspect ratios and densities. (2) These footprints
can be placed in a multitude of physical locations, different
for each component and for each footprint. (3) Speed in
performing the placement is of the essence, even at a price
in quality of results. Therefore, we have opted for a fairly
straightforward greedy approach.

We treat the circuit as an undirected graph, and we process
the components in the elastic circuit produced by Dynamatic
in a fixed order: Firstly, we identify the elastic component in
the netlist with the maximum number of connections to others.
It will be the first one placed; the center of this component
becomes the reference point. Secondly, we perform a breadth-
first traversal of the elastic graph from this component and
place the rest of the circuit in the order of the traversal.

Once we have determined the order of placement, we center
our placement on a particular reference tile of the FPGA array
(the center of the FPGA or the center of the area where
we want our design placed) and proceed as follows for each

5

cmp
branch

fork

add

buff2

buff1

b)

buff1

add

fork

cmpbranch

a)

Root

buff2

Fig. 8: Greedy Placement. (a) fork is the first unit placed
because it has the largest number of connections to other units.
(b) Components are placed in topological order starting from
the fork, using the footprint that allows the closest placement
to the centre and, in the case of ties, the tallest footprint.

component to place: (1) We start with a radius = 1. (2) We
consider all footprints of the component to be placed and see
if any can be placed such that its center is at a Manhattan
distance from the reference smaller than or equal to the radius.
(3) If none can, we increase the radius and go back to step 1.
(4) If only one footprint is possible, we place the component
and move to the next component, resetting the radius to one
(step 1). (5) If multiple footprints are possible, we take one
with the tallest aspect ratio, as this usually implies the best
routability, or one of them at random, if they have the same
aspect ratio. We continue with the next component (step 1).

Figure 8 shows a simple example of this greedy placement
algorithm. A real placed design is shown in Figure 9 (top). In
line with the goals of our placer, modules are placed adjacent
to each other and with a preference for taller aspect ratios.

B. Routing

Individual components have been internally routed already,
as discussed in Section IV; we now need to implement the
inter-component connections specified in the netlist produced
by Dynamatic. We base our component routing strategy on
an improved variant of an existing router, RWRoute [18]. In
contrast to vendor tools, RWRoute has a focus on runtime
at the expense of solution quality—and this perfectly aligns
with the goals of DynaRapid. To improve runtime even further,
we use RWRoute in non-timing-driven mode. The variant of
RWRoute that we employ (PartialRouter) attempts to preserve
as much preexisting intra-component routing as possible,
ripping up existing routing inside components only as a last
resort. Experimentally, we have found this approach to be
sufficient to reach full routability. Figure 9 (bottom) shows
the layout of the final, fully placed-and-routed design.

VI. EVALUATION

In this section, we evaluate the effectiveness of DynaRa-
pid1. After discussing its implementation and our evaluation
methodology, we compare the runtime and the resource usage
of DynaRapid with that of the commercial FPGA backend
when implementing the same elastic circuits. We break down

1DynaRapid is released as open-source and available for download at
https://sites.google.com/view/dynarapid

sub6

MCidx

source2

Buffer2
phi2

fork0
cst4 cst2

icmp13
source0

load5

sink3 fork4 Buffer3 source1
fork9 branch3 fork4 fork2

Buffer7
Buffer3

cst3

phiC1
Buffer5 sink2

fork3

add12

MCdi

phi1

Buffer8 branch1
Buffer9 Buffer4 branch0

forkC6
branchCsink4

load9
Buffer11

sink1
start0

cst0 Buffer10 phiC2

mul10

end0
branchC5 cst1 brCstblo

add11
phin0

branch2 Buffer1 sink0
Buffer6

ret0

Fig. 9: Final Placed-and-Routed Design. The output generated
by DynaRapid is a legal, fully routed design with no routing
errors nor overlapping components.

the runtime into components to better understand the speedup
sources and potential scalability weaknesses. We then compare
the place-and-route quality of DynaRapid with that of the
standard flow and contrast their placement densities. We
conclude with some considerations on bitstream generation.

A. DynaRapid Implementation

As shown in Figure 2, DynaRapid is run in two phases:
(1) library generation, described in Section IV and performed
offline once per FPGA device, and (2) compilation, described
in Section V and executed for every circuit. DynaRapid
is implemented in Java and uses the RapidWright API for
device-specific tasks such as FPGA map extraction, compo-
nent loading, stitching, and relocation, as well as for custom
manipulations of the design (e.g., FFs insertion, Section IV-C).
DynaRapid uses Vivado™ for the standard placement and
routing tasks during the library generation process and for the
integrity checks of the footprints. The design input to DynaRa-
pid is the intermediate elastic graph output by an unmodified
version of the open-source Dynamatic [9]. DynaRapid has
available all necessary components in the preimplemented li-
brary (Section IV) and assembles them into a circuit following
the strategy described in Section V. At the end of the design
steps presented in Section V, a fully placed-and-routed design
checkpoint can be generated and imported into the standard
Vivado toolchain for timing analysis, bitstream generation, and
integration with other PE kernels or shells to form a fully-
featured design checkpoint.

B. Methodology and Benchmarks

The experiments are performed on a server Intel(R) Xeon(R)
CPU E5-2698 v4 clocked at 2.20 GHz and provided with
256 GB of RAM, using all available threads. We compare
DynaRapid with a commercial FPGA flow, Vivado 2023.1,
targeting a Virtex UltraScale+™ xcvu13p-fsga2577. We pro-
vide as input to DynaRapid the elastic circuit from Dynamatic
in DOT format. For the baseline, we supply Vivado with

6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30 35

M
ax

im
um

 F
re

qe
nc

y
N

or
m

al
iz

ed

Runtime Speedup (X)

vector_rescale

fir

iir

matrix
cnn

gaussian

video_filter
image_resize

mtttkrpmm

Fig. 10: Runtime Speedup vs. Performance (i.e., Frequency)
Degradation of DynaRapid compared to Vivado.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

LUTs FFs DSPs

R
at

io

Fig. 11: DynaRapid Resource Overheads over Vivado.

the same elastic circuit description but translated into an
RTL netlist of elastic components, as provided by Dyna-
matic. Since we target a fast implementation, we configure
Vivado accordingly with the following runtime directives:
For synthesis, we use the Flow Runtime Optimized strate-
gies [19]. For placement and routing, we employ the option
-directive Quick, offering the fastest non-timing-driven
compile time to generate a legal design [20]. We compare the
two generated placed and routed designs with Vivado using the
standard commands report_utilization for resources
and report_timing for the maximum frequency. We also
use the command report_route_status to verify that
all designs are fully routed without errors. Our benchmarks
are typical HLS kernels from a recent work on dynamic
scheduling [21], standard HLS suites [22], and PEs from
RapidStream [16].

C. DynaRapid vs. a Commercial FPGA Backend

In this section, we compare DynaRapid with a commercial
FPGA backend. Table I compares the implementation runtime
and the circuit quality in terms of the operating frequency and
resources (i.e., LUTs, FFs, and DSPs). We omit clock cycle
counts as the implemented elastic circuits are identical: they
execute in the same number of cycles and performance is thus
proportional to the reported operating frequencies.

As indicated in Table I, DynaRapid completes the im-
plementation, on average, 20× faster than the commercial
flow. This is due to the fact that it leverages preimplemented
implementations: the small number of coarser (word-level)

components can be efficiently placed-and-routed on the FPGA
fabric. In contrast, the commercial flow has to place and
route netlists with at least an order of magnitude more (bit-
level) components, and this at a significant runtime cost.
Yet, its complete control on the circuit makes it possible to
exploit the advantages of logic synthesis optimizations across
components. DynaRapid, instead, synthesizes each component
in isolation and cannot thus exploit this potential for opti-
mization; this is reflected in a resource overhead of 1.8× on
average. For the same reason, its routing flexibility is reduced
and, thus, the achieved operating frequencies are lower; we
will investigate this further in the following section.

D. Runtime Breakdown and Scalability

In this section, we analyze the dependence of DynaRapid’s
compilation time on benchmark complexity. The runtime
breakdown for all benchmarks is reported in Table II. The
time required for initialization, placement, and stitching (i.e.,
adding the connections between components) only slightly
varies across benchmarks. As the number of components
increases, the time to load them in slightly grows as well.
Routing exhibits the largest runtime variations as the bench-
mark complexity increases (see cnn); yet, as discussed before,
this is still significantly faster than the commercial flow for
only a limited degradation in the final Fmax.

E. Place-and-Route Comparison

As mentioned in the previous section, Vivado can apply
logic optimizations across elastic components, whereas Dy-
naRapid can only optimize each component in isolation. It is
thus reasonable to expect that the increased design size and
complexity results in frequency degradation. In Table III, we
compare the effectiveness of the two place and route processes,
factoring out such logic optimizations across components.

To prevent Vivado from applying logic optimizations on the
RTL version of the designs, we provide Vivado with the post
synthesis gate-level netlists of DynaRapid’s preimplemented
components for place and route. Thus, the circuits placed
and routed by the two flows are perfectly identical; the only
difference is that DynaRapid will perform placement at a
component level, whereas Vivado will place individual LUTs
and FFs flattened across all components. Naturally, DynaRapid
is still significantly faster.

F. Design Placement Density

In the previous section, we compared area consumption in
terms of LUTs, FFs, and DSPs. This section quantifies the
white space wasted among the used resources—that is, we
measure placement density as the fraction of used resources
within the rectangular bounding box around the compiled
design. Figure 12 shows a series of placement density experi-
ments: Firstly, we let DynaRapid do its placement and routing
and observe how many discrete areas (i.e., clock regions) of the
FPGA are used (Figure 12a). Then, we have Vivado perform
its task using -directive Quick in the same FPGA
region (Figure 12b); Vivado achieves a similar density as

7

TABLE I: DynaRapid vs. Vivado. The values are plotted in Figures 10 and 11.

Benchmarks Components Runtime (s) Fmax (MHz) LUTs FFs DSPs
Dyna- Vivado Speedup Dyna- Vivado Ratio Dyna- Vivado Ratio Dyna- Vivado Ratio Dyna- Vivado
Rapid Rapid Rapid Rapid Rapid

vector rescale 50 15 489 33 140 179 0.79 626 534 1.17 687 552 1.24 3 3
fir 65 15 482 32 235 345 0.68 845 637 1.33 953 813 1.17 3 3
iir 91 19 505 27 173 204 0.85 1306 1113 1.17 1838 1644 1.12 6 6
image resize 113 21 497 24 137 154 0.89 2376 1339 1.56 1521 1318 1.15 0 0
matrix 167 33 524 16 147 143 1.02 3912 2090 1.87 3164 2341 1.35 3 3
gaussian 178 21 495 24 138 149 0.92 3706 1455 2.55 2669 1810 1.47 3 3
video filter 186 32 521 16 143 154 0.93 5985 2368 2.53 2969 2847 1.04 9 9
mm 319 40 509 13 72 63 1.16 14487 4038 3.59 3222 3138 1.03 3 3
mttkrp 201 26 474 18 95 85 1.11 6833 2226 3.07 1964 1832 1.07 6 6
cnn 790 50 524 10 152 160 0.95 10144 9449 1.07 12406 11731 1.06 18 18
GEOMEAN 25 502 20× 138 149 0.9 1.82 1.16

TABLE II: Runtime Breakdown. All values are in seconds.

Benchmark Init. Placement Loading Stitching Routing
vector rescale 4.1 0.02 4.4 0.5 6
fir 4.2 0.02 4.0 1.2 6
iir 5.1 0.04 3.6 0.7 10
image resize 5.6 0.05 6.0 0.8 9
matrix 6.1 0.06 6.3 1.1 20
gaussian 6.3 0.04 6.4 0.9 12
video filter 7.5 0.37 6.3 1.1 17
mm 3.8 0.37 8.2 4.6 23
mttkrp 4.9 0.05 6.8 2.6 15
cnn 8.3 0.18 7.4 1.4 32

TABLE III: Comparison of the runtime and quality of Dy-
naRapid with Vivado when given the identical netlist.

Benchmark Runtime (s) Fmax (MHz)
Dyna- Vivado Speedup Dyna- Vivado Ratio
Rapid (post-syn) Rapid (post-syn)

vector rescale 15 420 28 141 167 0.85
fir 15 412 27 235 294 0.80
iir 19 420 22 173 217 0.80
image resize 21 447 22 137 147 0.93
matrix 33 451 14 147 143 1.03
gaussian 21 435 21 138 145 0.95
video filter 32 457 14 143 143 1.00
mm 40 499 12 72 91 0.79
mttkrp 26 478 18 95 100 0.95
cnn 50 457 9 152 196 0.78
GEOMEAN 25 447 18× 0.9

DynaRapid (around 30%). It is possible to constrain Vivado’s
design into a smaller region; for this, we manually reduced the
region obtaining the smallest routable placement. Vivado thus
achieves a density up to 65% in about 1.5× (685 seconds) the
time of the loosely constrained implementation (Figure 12c)
with 141MHz Fmax. Finally, we bounded our placer to the
boundaries of the area used by Vivado for the smallest routable
implementation; DynaRapid succeeds in matching the same
density (Figure 12d), with only 1.1× the time (35 seconds)
and 136MHz Fmax.

b) Vivado placementa) DynaRapid unconstrained placement

d) DynaRapid constrained placement c) Vivado constrained placement

Fig. 12: Visualization of Vivado and DynaRapid placement
density for the video filter benchmark. (a) DynaRapid place-
ment. (b) Vivado placement in the same region. (c) Vivado’s
manually obtained minimum footprint. (d) DynaRapid place-
ment constrained to Vivado’s minimum footprint.

G. Bitstream Generation

We successfully generated bitstreams from DynaRapid us-
ing Vivado, demonstrating that the implementations are not
only valid but also passed necessary design rule checks
(DRCs) for safe programming onto hardware. Although
DRC and bitstream generation runtime are not the focus
of this work, the FIR benchmark consumes 156 seconds
in write_bitstream for a full device bitstream. Yet,
considering the runtime advances shown by DynaRapid, we
believe there exists a motivation for vendors to make DRC
and bitstream improvements that will lead to much more
performant solutions in the future.

VII. CONCLUSIONS

In this paper, we presented DynaRapid, a very fast com-
pilation tool that enables the generation of fully placed-and-
routed circuits in a matter of seconds. Our work leverages
the modularity of recent HLS approaches that generate elastic
circuits from C code to preimplement all standard elastic com-
ponents so that they can be readily used across all applications.
DynaRapid generates a fully placed-and-routed design in at
most a few tens of seconds, bringing the compilation process
to the same order of magnitude that software developers expect
while compiling software code. We think that something along
the lines of DynaRapid is essential to make FPGAs more
appealing to software programmers.

8

REFERENCES

[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473–91, Apr. 2011.

[2] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,” ACM
Transactions on Embedded Computing Systems, vol. 13, no. 2, pp. 24:1–
24:27, Sep. 2013.

[3] S. A. Edwards, R. Townsend, and M. A. Kim, “Compositional dataflow
circuits,” in Proceedings of the 15th ACM-IEEE International Confer-
ence on Formal Methods and Models for System Design, Vienna, Sep.
2017, pp. 175–84.

[4] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-
level synthesis,” in Proceedings of the 26th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, Calif., Feb.
2018, pp. 127–36.

[5] C. Lavin and A. Kaviani, “RapidWright: Enabling custom crafted
implementations for FPGAs,” in 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines, Sep.
2018, pp. 133–140.

[6] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A complement
to superscalar,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, Austin, Tex., Mar. 2005,
pp. 177–86.

[7] A. Elakhras, A. Guerrieri, L. Josipović, and P. Ienne, “Unleashing paral-
lelism in elastic circuits with faster token delivery,” in Proceedings of the
22nd Intl. Conference on Field-Programmable Logic and Applications,
Belfast, UK, Aug. 2022, pp. 253–61.

[8] R. Li, L. Berkley, Y. Yang, and R. Manohar, “Fluid: An asynchronous
high-level synthesis tool for complex program structures,” in Proceed-
ings of the 27th International Symposium on Asynchronous Circuits and
Systems, Beijing, China., Sep. 2021, pp. 1–8.

[9] L. Josipović, A. Guerrieri, and P. Ienne, “Dynamatic: From C/C++ to
dynamically scheduled circuits,” in Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Seaside,
Calif., Feb. 2020, pp. 1–10.

[10] Y. Sankar and J. Rose, “Trading quality for compile time: Ultra-
fast placement for FPGAs,” in Proceedings of the 1999 ACM/SIGDA
Seventh International Symposium on Field Programmable Gate Arrays,
Monterey, Calif., Feb. 1999, pp. 157–166.

[11] C. Mulpuri and S. Hauck, “Runtime and quality tradeoffs in FPGA
placement and routing,” in Proceedings of the 2001 ACM/SIGDA Ninth

International Symposium on Field Programmable Gate Arrays, Mon-
terey, California, USA, Feb. 2001, pp. 29–36.

[12] R. Tessier, “Fast placement approaches for FPGAs,” ACM Transaction
on Design Automation of Electronic Systems, vol. 7, no. 2, pp. 284–305,
Apr. 2002.

[13] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “HMFlow: Accelerating FPGA compilation with hard
macros for rapid prototyping,” in 2011 IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines, Salt
Lake City, Utah, May 2011, pp. 117–124.

[14] Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith,
A. Merczynski-Hait, and A. DeHon, “PLD: Fast FPGA compilation to
make reconfigurable acceleration compatible with modern incremental
refinement software development,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’22. New York, NY,
USA: Association for Computing Machinery, 2022, pp. 933–45.

[15] Y. Xiao, D. Park, Z. J. Niu, A. Hota, and A. DeHon, “ExHiPR:
Extended high-level partial reconfiguration for fast incremental FPGA
compilation,” ACM Trans. Reconfigurable Technol. Syst., Sep. 2023.

[16] L. Guo, P. Maidee, Y. Zhou, C. Lavin, J. Wang, Y. Chi, W. Qiao,
A. Kaviani, Z. Zhang, and J. Cong, “RapidStream: Parallel physical
implementation of FPGA HLS designs,” in Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Virtual Event, USA, Feb. 2022, pp. 1–12.

[17] Xilinx Architecture Terminology, AMD Inc., 2023. [Online]. Available:
https://www.rapidwright.io/docs/Xilinx Architecture.html

[18] Y. Zhou, P. Maidee, C. Lavin, A. Kaviani, and D. Stroobandt,
“RWRoute: An open-source timing-driven router for commercial FP-
GAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 1, Nov.
2021.

[19] Vivado Design Suite User Guide: Synthesis, AMD
Inc., 2023. [Online]. Available: https://docs.xilinx.com/r/en-US/
ug901-vivado-synthesis/Vivado-Preconfigured-Strategies

[20] Vivado Design Suite, Xilinx Inc., 2023. [Online]. Available: http:
//www.xilinx.com/products/design-tools/vivado.html

[21] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer placement and sizing for high-performance dataflow circuits,” in
Proceedings of the 28th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Seaside, Calif., Feb. 2020, pp. 186–96.

[22] L.-N. Pouchet, Polybench: The polyhedral benchmark suite, 2012.
[Online]. Available: http://www.cs.ucla.edu/pouchet/software/polybench

9

https://www.rapidwright.io/docs/Xilinx_Architecture.html
https://docs.xilinx.com/r/en-US/ug901-vivado-synthesis/Vivado-Preconfigured-Strategies
https://docs.xilinx.com/r/en-US/ug901-vivado-synthesis/Vivado-Preconfigured-Strategies
http://www.xilinx.com/products/ design-tools/vivado.html
http://www.xilinx.com/products/ design-tools/vivado.html
http://www. cs. ucla. edu/pouchet/software/polybench

	Introduction
	Exploiting Structure to Reduce Complexity
	Dynamatic + RapidWright = DynaRapid

	Related Work
	FPGA Architecture and RapidWright
	Library Generation
	Footprints and Relocation
	Routing Resources
	I/O Pins
	The Library

	Compilation
	Placement
	Routing

	Evaluation
	DynaRapid Implementation
	Methodology and Benchmarks
	DynaRapid vs. a Commercial FPGA Backend
	Runtime Breakdown and Scalability
	Place-and-Route Comparison
	Design Placement Density
	Bitstream Generation

	Conclusions
	References

